192 research outputs found

    Kelvin-Helmholtz instability in a current-vortex sheet at a 3D magnetic null

    Get PDF
    We report here, for the first time, an observed instability of a Kelvin-Helmholtz nature occurring in a fully three-dimensional (3D) current-vortex sheet at the fan plane of a 3D magnetic null point. The current-vortex layer forms self-consistently in response to foot point driving around the spine lines of the null. The layer first becomes unstable at an intermediate distance from the null point, with the instability being characterized by a rippling of the fan surface and a filamentation of the current density and vorticity in the shear layer. Owing to the 3D geometry of the shear layer, a branching of the current filaments and vortices is observed. The instability results in a mixing of plasma between the two topologically distinct regions of magnetic flux on either side of the fan separatrix surface, as flux is reconnected across this surface. We make a preliminary investigation of the scaling of the system with the dissipation parameters. Our results indicate that the fan plane separatrix surface is an ideal candidate for the formation of current-vortex sheets in complex magnetic fields and, therefore, the enhanced heating and connectivity change associated with the instabilities of such layers

    Quantifying three dimensional reconnection in fragmented current layers

    Get PDF
    There is growing evidence that when magnetic reconnection occurs in high Lundquist number plasmas such as in the Solar Corona or the Earth's Magnetosphere it does so within a fragmented, rather than a smooth current layer. Within the extent of these fragmented current regions, the associated magnetic flux transfer and energy release occur simultaneously in many different places. This investigation focusses on how best to quantify the rate at which reconnection occurs in such layers. An analytical theory is developed which describes the manner in which new connections form within fragmented current layers in the absence of magnetic nulls. It is shown that the collective rate at which new connections form can be characterized by two measures; a total rate which measures the true rate at which new connections are formed and a net rate which measures the net change of connection associated with the largest value of the integral of E || E|| through all of the non-ideal regions. Two simple analytical models are presented which demonstrate how each should be applied and what they quantify

    Proton acceleration at tearing coronal null-point current sheets

    Get PDF
    Context. Non-thermal particle acceleration in the solar corona is thought to constitute a substantial part of the energy budget of explosive events such as solar flares. One well-established mechanism of non-thermal acceleration is directly via fields in current sheets. Aims. In this paper we study proton acceleration during "spine-fan reconnection" at a 3D magnetic null point. This type of reconnection has recently been implicated in some flares known as circular-ribbon flares. It has also recently been discovered that the reconnecting current sheet may undergo a non-linear tearing-type instability. This tearing leads to the formation of flux ropes and quasi-turbulent dynamics. Methods. A predictor-corrector test particle code is used to model the trajectories of protons at different stages of sheet tearing: when the sheet is intact, just after the formation of the first major flux rope, and once the non-linear phase of the instability has become more fully developed. The fields for these proton trajectories were taken from snapshots of a 3D magnetohydrodynamics simulation treated as three static field geometries represented by interpolated grids. Acceleration in the intact current sheet is compared to earlier simulations of infinite static current sheets and then used as a control case with which to compare the later snapshots. Results. Protons are found to be predominantly accelerated along the fan surface, especially in the absence of current sheet tearing. Most of the highest energy protons are accelerated in the main body of the current sheet, along the direction of strongest parallel electric field. A high energy tail is present in the kinetic energy distribution. After tearing commences, this direct acceleration no longer dominates and acceleration in the outflow regions makes a proportionally greater contribution. Sheet tearing appears overall to hinder the acceleration of protons in the fan plane, at least in the absence of time-dependent acceleration mechanisms. Some correlation is found between high energy protons and locations of flux ropes formed by the instability, but the nature of the link remains at present unclear.</p

    Spine-fan reconnection. The influence of temporal and spatial variation in the driver

    Get PDF
    Context. From observations, the atmosphere of the Sun has been shown to be highly dynamic with perturbations of the magnetic field often lacking temporal or spatial symmetry. Despite this, studies of the spine-fan reconnection mode at 3D nulls have so far focused on the very idealised case with symmetric driving of a fixed spatial extent. Aims. We investigate the spine-fan reconnection process for less idealised cases, focusing on asymmetric driving and drivers with different length scales. We look at the initial current sheet formation and whether the scalings developed in the idealised models are robust in more realistic situations. Methods. The investigation was carried out by numerically solving the resistive compressible 3D magnetohydrodynamic equations in a Cartesian box containing a linear null point. The spine-fan collapse was driven at the null through tangential boundary driving of the spine foot points. Results. We find significant differences in the initial current sheet formation with asymmetric driving. Notable is the displacement of the null point position as a function of driving velocity and resistivity (η). However, the scaling relations developed in the idealised case are found to be robust (albeit at reduced amplitudes) despite this extra complexity. Lastly, the spatial variation is also shown to play an important role in the initial current sheet formation through controlling the displacement of the spine foot points. Conclusions. We conclude that during the early stages of spine-fan reconnection both the temporal and spatial nature of the driving play important roles, with the idealised symmetrically driven case giving a “best case” for the rate of current development and connectivity change. As the most interesting eruptive events occur in relatively short time frames this work clearly shows the need for high temporal and spatial knowledge of the flows for accurate interpretation of the reconnection scenario. Lastly, since the scalings developed in the idealised case remain robust with more complex driving we can be more confident of their use in interpreting reconnection in complex magnetic field structures

    Three-Dimensional Simulations of Tearing and Intermittency in Coronal Jets

    Get PDF
    Observations of coronal jets increasingly suggest that local fragmentation and intermittency play an important role in the dynamics of these events. In this work, we investigate this fragmentation in high-resolution simulations of jets in the closed-field corona. We study two realizations of the embedded-bipole model, whereby impulsive helical outflows are driven by reconnection between twisted and untwisted field across the domed fan plane of a magnetic null. We find that the reconnection region fragments following the onset of a tearing-like instability, producing multiple magnetic null points and flux-rope structures within the current layer. The flux ropes formed within the weak-field region in the center of the current layer are associated with "blobs" of density enhancement that become filamentary threads as the flux ropes are ejected from the layer, whereupon new flux ropes form behind them. This repeated formation and ejection of flux ropes provides a natural explanation for the intermittent outflows, bright blobs of emission, and filamentary structure observed in some jets. Additional observational signatures of this process are discussed. Essentially all jet models invoke reconnection between regions of locally closed and locally open field as the jet-generation mechanism. Therefore, we suggest that this repeated tearing process should occur at the separatrix surface between the two flux systems in all jets. A schematic picture of tearing-mediated jet reconnection in three dimensions is outlined

    Dynamic topology and flux rope evolution during non-linear tearing of 3D null point current sheets

    Get PDF
    In this work, the dynamic magnetic field within a tearing-unstable three-dimensional current sheet about a magnetic null point is described in detail. We focus on the evolution of the magnetic null points and flux ropes that are formed during the tearing process. Generally, we find that both magnetic structures are created prolifically within the layer and are non-trivially related. We examine how nulls are created and annihilated during bifurcation processes, and describe how they evolve within the current layer. The type of null bifurcation first observed is associated with the formation of pairs of flux ropes within the current layer. We also find that new nulls form within these flux ropes, both following internal reconnection and as adjacent flux ropes interact. The flux ropes exhibit a complex evolution, driven by a combination of ideal kinking and their interaction with the outflow jets from the main layer. The finite size of the unstable layer also allows us to consider the wider effects of flux rope generation. We find that the unstable current layer acts as a source of torsional magnetohydrodynamic waves and dynamic braiding of magnetic fields. The implications of these results to several areas of heliophysics are discussed

    Plumelets: Dynamic Filamentary Structures in Solar Coronal Plumes

    Get PDF
    Solar coronal plumes long seemed to possess a simple geometry supporting spatially coherent, stable outflow without significant fine structure. Recent high-resolution observations have challenged this picture by revealing numerous transient, small-scale, collimated outflows ("jetlets") at the base of plumes. The dynamic filamentary structure of solar plumes above these outflows, and its relationship with the overall plume structure, have remained largely unexplored. We analyzed the statistics of continuously observed fine structure inside a single representative bright plume within a mid-latitude coronal hole during 2016 July 2–3. By applying advanced edge-enhancement and spatiotemporal analysis techniques to extended series of high-resolution images from the Solar Dynamics Observatory's Atmospheric Imaging Assembly, we determined that the plume was composed of numerous time-evolving filamentary substructures, referred to as "plumelets" in this paper, that accounted for most of the plume emission. The number of simultaneously identifiable plumelets was positively correlated with plume brightness, peaked in the fully formed plume, and remained saturated thereafter. The plumelets had transverse widths of 10 Mm and intermittently supported upwardly propagating periodic disturbances with phase speeds of 190–260 km s−1 and longitudinal wavelengths of 55–65 Mm. The characteristic frequency (≈ 3.3 mHz) is commensurate with that of solar p-modes. Oscillations in neighboring plumelets are uncorrelated, indicating that the waves could be driven by p-mode flows at spatial scales smaller than the plumelet separation. Multiple independent sources of outflow within a single coronal plume should impart significant fine structure to the solar wind that may be detectable by Parker Solar Probe and Solar Orbiter
    corecore